
YEAH A7
- By Trip && Zheng



Logistics

● This assignment is due on Friday, March 5th at class time. Feel free to work 
in pairs!



Logistics

● This assignment is due on Friday, March 5th at class time. Feel free to work 
in pairs!

● In this assignment, you’ll be implementing classes for 2 hash tables: a Linear 
Probing Hash Table, and a Robin Hood Hash Table!



Logistics

● This assignment is due on Friday, March 5th at class time. Feel free to work 
in pairs!

● In this assignment, you’ll be implementing classes for 2 hash tables: a Linear 
Probing Hash Table, and a Robin Hood Hash Table!

● We highly recommend going through Keith’s lecture slides for detailed 
overviews of each.



Overview: Enums

● An Enumerated Type, or an enum, is a way to represent a variety of subtypes 
under a single umbrella type.



Overview: Enums

● An Enumerated Type, or an enum, is a way to represent a variety of subtypes 
under a single umbrella type.

● For example, if you wanted to create a car class, a great way to classify the 
car maker would be an enum! Here’s an example:



Overview: Enums

● An Enumerated Type, or an enum, is a way to represent a variety of subtypes 
under a single umbrella type.

● For example, if you wanted to create a car class, a great way to classify the 
car maker would be an enum! Here’s an example:



Overview: Enums

● An Enumerated Type, or an enum, is a way to represent a variety of subtypes 
under a single umbrella type.

● For example, if you wanted to create a car class, a great way to classify the 
car maker would be an enum! Here’s an example:

● And example usages:
○ CarType c1 = CarType::HONDA
○ CarType c2 = CarType::FORD
○ if (c1 == c2) // do something!



Overview: Enums

● An Enumerated Type, or an enum, is a way to represent a variety of subtypes 
under a single umbrella type.

● For example, if you wanted to create a car class, a great way to classify the 
car maker would be an enum! Here’s an example:

● And example usages:
○ CarType c1 = CarType::HONDA
○ CarType c2 = CarType::FORD
○ if (c1 == c2) // do something!

● Any questions?



Linear Probing



Linear Probing

● In this first part, your job is to implement the following class:



Linear Probing

● Here’s the private section:



Linear Probing

● Here’s the private section:
Remember these? These 
enums signify whether a 
slot is empty, full, or a 
tombstone!



Linear Probing

● Here’s the private section:
Remember these? These 
enums signify whether a 
slot is empty, full, or a 
tombstone!

This is a Slot, which is a 
single entry in the hash 
table!



Linear Probing

● Here’s how to use the HashFunction type: 



Linear Probing: Insert
● To insert into the Hash Table, begin by trying to insert at the hashed value of the 

element. Try the next Slot if the current Slot is FILLED. Insert your element if the slot if 
EMPTY or TOMBSTONE. 

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::insert(“elem2”);
---------------------------------------------
int index = myHashFunction(“elem2”); // index = 0



Linear Probing: Insert
● To insert into the Hash Table, begin by trying to insert at the hashed value of the 

element. Try the next Slot if the current Slot is FILLED. Insert your element if the slot if 
EMPTY or TOMBSTONE. 

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::insert(“elem2”);
---------------------------------------------
int index = myHashFunction(“elem2”); // index = 0

0

This Slot is FILLED.

Keep moving!



Linear Probing: Insert
● To insert into the Hash Table, begin by trying to insert at the hashed value of the 

element. Try the next Slot if the current Slot is FILLED. Insert your element if the slot if 
EMPTY or TOMBSTONE. 

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::insert(“elem2”);
---------------------------------------------
int index = myHashFunction(“elem2”); // index = 0

1



Linear Probing: Insert
● To insert into the Hash Table, begin by trying to insert at the hashed value of the 

element. Try the next Slot if the current Slot is FILLED. Insert your element if the slot if 
EMPTY or TOMBSTONE. 

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::insert(“elem2”);
---------------------------------------------
int index = myHashFunction(“elem2”); // index = 0

1

This Slot a TOMBSTONE.

We can fill it! Return true!



Linear Probing: Insert
● Some edge cases:

○ Be sure to return false if the table is full! 
○ Also return false if the element being inserted already exists in the table!



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0

0

The element at index 0 is 
filled, but the value is not 
elem3!

Keep moving!



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0

1



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0

1

This elem is a tombstone!

Keep moving!



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0

2



Linear Probing: Contains
● To determine whether an element exists in the Hash Table, linearly scan through the 

array from the hash position until you either find the element (return true!) or find an 
empty space (return false!) You should not stop at tombstones.

{“elem1”, SlotType::FILLED } {“elem2”, 
SlotType::TOMBSTONE }

{“elem3”, SlotType::FILLED } {“”, SlotType::EMPTY } {“”, SlotType::EMPTY }

0 1 2 3 4

LinearProbingHashTable::contains(“elem3”);
---------------------------------------------
int index = myHashFunction(“elem3”); // index = 0

2

This is our element! 
Return true!



Linear Probing: Contains
● Some edge cases:

○ Be sure to return false if the table is empty! 
○ That’s it :)



Linear Probing: Remove
● Remove is just like contains, except when you locate the element, set its SlotType 

field to TOMBSTONE.



Linear Probing: Remove
● Remove is just like contains, except when you locate the element, set its SlotType 

field to TOMBSTONE.
● Be sure to return false if the table is empty, or if you can’t find the element!



Linear Probing: Remove
● Remove is just like contains, except when you locate the element, set its SlotType 

field to TOMBSTONE.
● Be sure to return false if the table is empty, or if you can’t find the element!
● Large brain hint: Is there a way you can consolidate logic between contains() and 

remove()?



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 

○ In a similar vein, don’t read the string value of TOMBSTONE slots! Take a second 
to think why this is important.



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 

○ In a similar vein, don’t read the string value of TOMBSTONE slots! Take a second 
to think why this is important.

○ We highly recommend implementing printDebugInfo() like you did in A6.



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 

○ In a similar vein, don’t read the string value of TOMBSTONE slots! Take a second 
to think why this is important.

○ We highly recommend implementing printDebugInfo() like you did in A6.
○ Please don’t use any auxiliary data structures in this assignment. A Slot * is all 

you need.



Linear Probing
Any last questions?



Robinhood Hashing



Robinhood Hashing

● What are some drawbacks of LP?



Robinhood Hashing

● What are some drawbacks of LP?
○ Some elements are much further than others.



Robinhood Hashing

● What are some drawbacks of LP?
○ Some elements are much further than others.
○ Tombstones can drastically slow down searches.



Robinhood Hashing

● What are some drawbacks of LP?
○ Some elements are much further than others.
○ Tombstones can drastically slow down searches.

● The next class you are implementing attempt to alleviate these problems!



Robinhood Hashing

● What are some drawbacks of LP?
○ Some elements are much further than others.
○ Tombstones can drastically slow down searches.

● The next class you are implementing attempt to alleviate these problems!



Robinhood Hashing

● What are some drawbacks of LP?
○ Some elements are much further than others.
○ Tombstones can drastically slow down searches.

● The next class you are implementing attempt to alleviate these problems!



Robinhood Hashing

● The public functions are exactly the same:



Robinhood Hashing

● Some changes to the private members:



Robinhood Hashing

● Some changes to the private members:
No tombstones (rip).



Robinhood Hashing

● Some changes to the private members:
No tombstones (rip).

We additionally store 
distance.



Robinhood Hashing

● Some changes to the private members:
No tombstones (rip).

We additionally store 
distance. Distance 
measures how many slots 
to the RIGHT of the 
original slot (wraps 
around) the element is.



Robinhood Hashing

● What changed?
● Insert, contain, and remove.



Robinhood Hashing: Insert

● LP: If no duplicates and has space, find the next open slot (tombstone or 
empty) and insert the element there.



Robinhood Hashing: Insert

● LP: If no duplicates and has space, find the next open slot (tombstone or 
empty) and insert the element there.

● Robinhood: If no duplicates and has space, find the next empty slot OR a slot 
filled by an element with less distance than you.



Robinhood Hashing: Insert

● LP: If no duplicates and has space, find the next open slot (tombstone or 
empty) and insert the element there.

● Robinhood: If no duplicates and has space, find the next empty slot OR a slot 
filled by an element with less distance than you.

○ Remember to find a home for that element using the same rule :).



Robinhood Hashing: Contains

● LP: Go through the table and look for it. Stop when you find the element or 
an open slot.



Robinhood Hashing: Contains

● LP: Go through the table and look for it. Stop when you find the element or 
an open slot.

● Robinhood: Go through the table and look for it. Stop when you find the 
element or an open slot OR an element that is closer to home than you 
should be.



Robinhood Hashing: Remove

● LP: Look for it using the same set of rules as contains. If found, replace 
with a tombstone and call it a day.



Robinhood Hashing: Remove

● LP: Look for it using the same set of rules as contains. If found, replace 
with a tombstone and call it a day.

● Robinhood: Look for it using the same set of rules as contains. If found, 
delete the element, and shift the element to the right of it.



Robinhood Hashing: Remove

● LP: Look for it using the same set of rules as contains. If found, replace 
with a tombstone and call it a day.

● Robinhood: Look for it using the same set of rules as contains. If found, 
delete the element, and shift the element to the right of it.

○ Repeat this shift until you have found an empty slot or an element situating in its native slot.



Robinhood Hashing: Remove

● LP: Look for it using the same set of rules as contains. If found, replace 
with a tombstone and call it a day.

● Robinhood: Look for it using the same set of rules as contains. If found, 
delete the element, and shift the element to the right of it.

○ Repeat this shift until you have found an empty slot or an element situating in its native slot.
○ This is called backwards-shift deletion.



Robinhood Hashing: Implementation Thoughts 

● Most of the tips from LP applies!



Linear Probing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 

○ In a similar vein, don’t read the string value of TOMBSTONE slots! Take a second 
to think why this is important.

○ We highly recommend implementing printDebugInfo() like you did in A6.
○ Please don’t use any auxiliary data structures in this assignment. A Slot * is all 

you need.



Linear Probing Robinhood Hashing
● Final notes about this problem:

○ You shouldn’t use recursion in this project. Doing so will cause stack overflow 
problems for our larger test cases.

○ Don’t mess with the string values of slots, unless you’re inserting a new 
element. If you’re removing a slot, just set its SlotType to TOMBSTONE. 

○ In a similar vein, don’t read the string value of TOMBSTONE slots! Take a second 
to think why this is important.

○ We highly recommend implementing printDebugInfo() like you did in A6.
○ Please don’t use any auxiliary data structures in this assignment. A Slot * is all 

you need.



Robinhood Hashing: Implementation Thoughts 

● Most of the tips from LP applies!
● Do not kick elements out when distances are the same.



Robinhood Hashing: Implementation Thoughts 

● Most of the tips from LP applies!
● Do not kick elements out when distances are the same.
● Be super careful about your backwards-shift deletion. Use the interactive 

interface to make sure that you are doing it correctly!



Robinhood Hashing: Implementation Thoughts 

● Most of the tips from LP applies!
● Do not kick elements out when distances are the same.
● Be super careful about your backwards-shift deletion. Use the interactive 

interface to make sure that you are doing it correctly!
● There are a lot of optimizations you need to make.



Robinhood Hashing: Implementation Thoughts 

● Most of the tips from LP applies!
● Do not kick elements out when distances are the same.
● Be super careful about your backwards-shift deletion. Use the interactive 

interface to make sure that you are doing it correctly!
● There are a lot of optimizations you need to make.
● Start early :).



Robinhood Hashing
Questions?


